Welcome to AP Calculus AB!

Attached is your Summer Packet that includes the prerequisite skills needed for success in Calculus. The first section of the packet contains practice problems, and the second section contains helpful notes and formulas for you to use while completing your packet. This assignment is **due the first day of school, September 6, 2022**. If you have any questions about this packet, please see me in room C8. I look forward to working with you in the fall!

Sincerely,

Deborah Coccimiglio, Ed. D.

Dr. Cacciniglia

Poquoson High School

Mathematics Teacher

deborah.coccimiglio@poquoson.k12.va.us

Calculus - SUMMER PACKET

NAME:

Summer + Math = $(Best Summer Ever)^2$

NO CALCULATOR!!!

Given $f(x) = x^2 - 2x + 5$, find the following.

1.
$$f(-2) =$$

2.
$$f(x+2) =$$

$$3. f(x+h) =$$

Use the graph f(x) to answer the following.

4.
$$f(0) =$$

$$f(4) =$$

$$f(-1) =$$

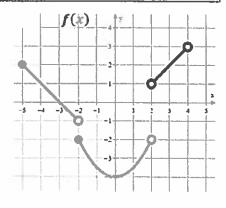
$$f(-2) =$$

$$f(2) =$$

$$f(3) =$$

$$f(x) = 2$$
 when $x = ?$

$$f(x) = -3$$
 when $x = ?$



Write the equation of the line meets the following conditions. Use point-slope form.

$$y - y_1 = m(x - x_1)$$

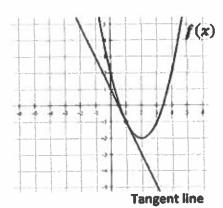
5. slope = 3 and
$$(4, -2)$$

6.
$$m = -\frac{3}{2}$$
 and $f(-5) = 7$

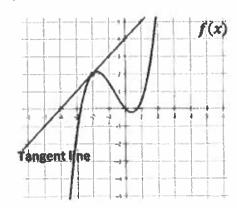
7.
$$f(4) = -8$$
 and $f(-3) = 12$

Write the equation of the tangent line in point slope form. $y - y_1 = m(x - x_1)$

8. The line tangent to f(x) at x = 1

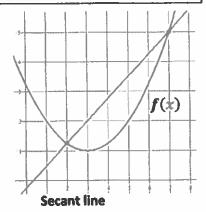


9. The line tangent to f(x) at x = -2



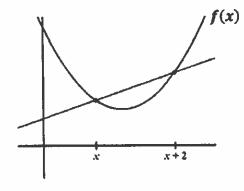
MULTIPLE CHOICE! Remember slope = $\frac{y_2-y_1}{y_1-y_2}$

- 10. Which choice represents the slope of the secant line shown?
- A) $\frac{7-2}{f(7)-f(2)}$ B) $\frac{f(7)-2}{7-f(2)}$ C) $\frac{7-f(2)}{f(7)-2}$ D) $\frac{f(7)-f(2)}{7-2}$



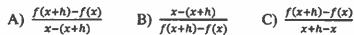
- 11. Which choice represents the slope of the secant line shown?

- A) $\frac{f(x)-f(x+2)}{x+2-x}$ B) $\frac{f(x+2)-f(x)}{x+2-x}$ C) $\frac{f(x+2)-f(x)}{x-(x+2)}$
- D) $\frac{x+2-x}{f(x)-f(x+2)}$



Secant line

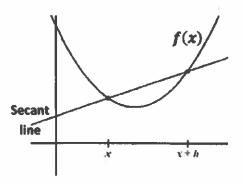
12. Which choice represents the slope of the secant line shown?



B)
$$\frac{x - (x + h)}{f(x + h) - f(x)}$$

C)
$$\frac{f(x+h)-f(x)}{x+h-x}$$

D)
$$\frac{f(x)-f(x+h)}{x+h-x}$$



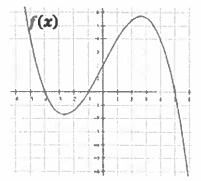
13. Which of the following statements about the function f(x) is true?

I.
$$f(2) = 0$$

II.
$$(x + 4)$$
 is a factor of $f(x)$

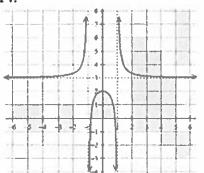
III.
$$f(5) = f(-1)$$

- (A) I only
- (B) II only
- (C) III only
- (D) I and III only
- (E) II and III only

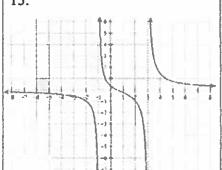


Find the domain and range (express in interval notation). Find all horizontal and vertical asymptotes.

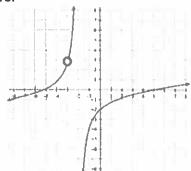
14.



15.



16.



Domain:

Range:

Horizontal Asymptote(s):

Vertical Asymptotes(s):

Domain:

Range:

Horizontal Asymptote(s):

Vertical Asymptotes(s):

Domain:

Range:

Horizontal Asymptote(s):

Vertical Asymptotes(s):

MULTIPLE CHOICE!

- 17. Which of the following functions has a vertical asymptote at x = 4?
 - (A) $\frac{x+5}{x^2-4}$
 - (B) $\frac{x^2-16}{x-4}$
 - (C) $\frac{4x}{x+1}$
 - (D) $\frac{x+6}{x^2-7x+12}$
 - (E) None of the above
- 18. Consider the function: $(x) = \frac{x^2 5x + 6}{x^2 4}$. Which of the following statements is true?
 - I. f(x) has a vertical asymptote of x = 2
 - II. f(x) has a vertical asymptote of x = -2
 - III. f(x) has a horizontal asymptote of y = 1
 - (A) I only
 - (B) II only
 - (C) I and III only
 - (D) II and III only
 - (E) I, II and III

					2
Rewrite the following	using rational	exponents.	Example:	$\frac{1}{\sqrt[3]{x^2}} =$	$x^{-\frac{2}{3}}$

19.
$$\sqrt[5]{x^3} + \sqrt[5]{2x}$$

20.
$$\sqrt{x+1}$$

21.
$$\frac{1}{\sqrt{x+1}}$$

$$22. \ \frac{1}{\sqrt{x}} - \frac{2}{x}$$

$$23. \ \frac{1}{4x^3} + \frac{1}{2}\sqrt[4]{x^3}$$

24.
$$\frac{1}{4\sqrt{x}} - 2\sqrt{x+1}$$

Write each expression in radical form and positive exponents. Example: $x^{-\frac{2}{3}} + x^{-2} = \frac{1}{\sqrt[3]{x^2}} + \frac{1}{x^2}$

25.
$$x^{-\frac{1}{2}} - x^{\frac{3}{2}}$$

$$26. \ \frac{1}{2}x^{-\frac{1}{2}} + x^{-1}$$

27.
$$3x^{\frac{1}{2}}$$

28.
$$(x+4)^{-\frac{1}{2}}$$

29.
$$x^{-2} + x^{\frac{1}{2}}$$

$$30. \ 2x^{-2} + \frac{3}{2}x^{-1}$$

Need to know basic trig functions in RADIANS! We never use degrees. You can either use the Unit Circle or Special Triangles to find the following.

31.	sin	π 6
-----	-----	--------

32.
$$\cos \frac{\pi}{4}$$

33.
$$\sin 2\pi$$

34.
$$\tan \pi$$

35.
$$\sec \frac{\pi}{2}$$

36.
$$\cos \frac{\pi}{6}$$

37.
$$\sin\frac{\pi}{3}$$

38.
$$\sin \frac{3\pi}{2}$$

39.
$$\tan \frac{\pi}{4}$$

40.
$$\csc \frac{\pi}{2}$$

41.
$$\sin \pi$$

42.
$$\cos \frac{\pi}{3}$$

43. Find x where
$$0 \le x \le 2\pi$$
,

$$\sin x = \frac{1}{2}$$

44. Find x where
$$0 \le x \le 2\pi$$
,

$$\tan x = 0$$

45. Find x where
$$0 \le x \le 2\pi$$
,

$$\cos x = -1$$

Solve the following equations. Remember $e^0 = 1$ and $\ln 1 = 0$.

46.
$$e^x + 1 = 2$$

47.
$$3e^x + 5 = 8$$

48.
$$e^{2x} = 1$$

49.
$$\ln x = 0$$

50.
$$3 - \ln x = 3$$

$$51. \ln(3x) = 0$$

$$52. \ x^2 - 3x = 0$$

$$53. e^x + xe^x = 0$$

$$54. \ e^{2x} - e^x = 0$$

	_
$56. \cos x = -1$	$57. \cos x = \frac{\sqrt{3}}{2}$
$59. \cos x = \frac{\sqrt{2}}{2}$	$60. \cos\left(\frac{x}{2}\right) = \frac{\sqrt{3}}{2}$
$62. \sin(2x) = 1$	$63. \sin\left(\frac{x}{4}\right) = \frac{\sqrt{3}}{2}$
ne its domain and range.	
Domain	Range
	$62. \sin(2x) = 1$

72. ln 1	73. ln e ⁷	74. $\log_3 \frac{1}{3}$
75. log _{1/2} 8	76. ln ½	77. $27^{\frac{2}{3}}$
$78. \ \left(5a^{2/3}\right)\left(4a^{3/2}\right)$	$79. \ \frac{4xy^{-2}}{12x^{-3}y^{-5}}$	80. $(4a^{5/3})^{3/2}$
If $f(x) = \{(3,5), (2,4), (1,7)\}\$ $h(x) = \{(3,2), (4,3), (1,6)\}\$ 81. $(f+h)(1)$	$g(x) = \sqrt{x-3}, \text{ then deter}$ $k(x) = x^2 + 5$ $82. (k-g)(5)$	mine each of the following. 83. $f(h(3))$
84. $g(k(7))$	85. h(3)	86. g(g(9))
87. $f^{-1}(4)$	88. $k^{-1}(x)$	
89. $k(g(x))$	90. g(f(2))	

Things to Know for Calculus

TRIGONOMETRY

Trig Functions

$$\sin\theta = \frac{\text{opp}}{\text{hyp}}$$

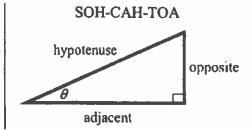
$$\cos \theta = \frac{\text{adj}}{\text{hyp}}$$
 $\tan \theta = \frac{\text{opp}}{\text{adj}}$

$$\tan \theta = \frac{\text{opp}}{\text{adj}}$$

$$\csc \theta = \frac{1}{\sin \theta} = \frac{\text{hyp}}{\text{opp}}$$

eciprocal Functions
$$\csc \theta = \frac{1}{\sin \theta} = \frac{\text{hyp}}{\text{opp}} \qquad \sec \theta = \frac{1}{\cos \theta} = \frac{\text{hyp}}{\text{adj}} \qquad \cot \theta = \frac{1}{\tan \theta} = \frac{\text{adj}}{\text{opp}}$$

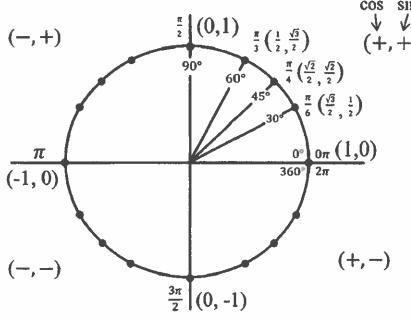
$$\cot \theta = \frac{1}{\tan \theta} = \frac{\text{adj}}{\text{opp}}$$



TEST ONLY USES RADIANS!

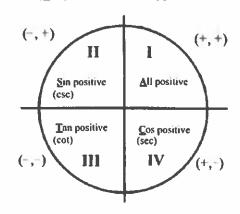
Must know trig values of special angles $0\pi, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi$ using Unit Circle or Special Right Triangles.

UNIT CIRCLE



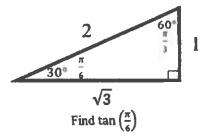
To help remember the signs in each quadrant

All Students Take Calculus



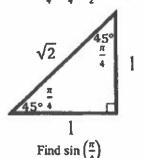
SPECIAL RIGHT TRIANGLES

$$30^{\circ} - 60^{\circ} - 90^{\circ}$$
 Triangles
Which are $\frac{\pi}{6} - \frac{\pi}{3} - \frac{\pi}{2}$ Triangles



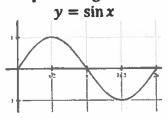
$$\tan\left(\frac{\pi}{6}\right) = \frac{\text{opp}}{\text{adj}} = \frac{1}{\sqrt{3}} \text{ simplify to } \frac{1}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{\sqrt{3}}{3}$$

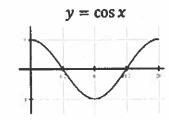
$$45^{\circ} - 45^{\circ} - 90^{\circ}$$
 Triangles
Which are $\frac{\pi}{4} - \frac{\pi}{4} - \frac{\pi}{2}$ Triangles

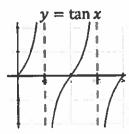


$$\sin\left(\frac{\pi}{4}\right) = \frac{opp}{hyp} = \frac{1}{\sqrt{2}} \text{ simplify to } \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{2}$$

Graphs of trig functions







Inverse Trig Function

 $\sin^{-1}\theta$ is the same as $\arcsin\theta$

 $\sin^{-1}\theta = \left(\frac{\sqrt{3}}{2}\right)$ means what angle has a sine value of $\frac{\sqrt{3}}{2}$ that means $\theta = \frac{\pi}{3} \pm 2\pi n$ or $\frac{2\pi}{3} \pm 2\pi n$

Since θ has infinite answers then it isn't a function. Bummer. To make it a function we define inverses like:

sin/csc and tan/cot use quadrant I and IV for inverses cos/sec use quadrant I and II for inverses

So... $\theta = \frac{\pi}{3}$ because it is in the first quadrant

Trig Identities

There are a bunch, but you really only need to know Pythagorean Identity. $\sin^2 x + \cos^2 x = 1$

Subtract $\sin^2 x$ to get $\cos^2 x = 1 - \sin^2 x$ or subtract $\cos^2 x$ to get $\sin^2 x = 1 - \cos^2 x$

Divide by $\sin^2 x$ to get $1 + \cot^2 x = \csc^2 x$ or divide by $\cos^2 x$ to get $\tan^2 x + 1 = \sec^2 x$

GEOMETRY

FORMULAS

AREA Triangle = $\frac{1}{2}bh$

Circle = πr^2

Trapezoid = $\frac{1}{2}(b_1 + b_2)h$

SURFACE AREA

Sphere = $4\pi r^2$

LATERAL AREA

Cylinder = $2\pi rh$

VOLUME

Sphere = $\frac{4}{3}\pi r^3$

Cylinder = $\pi r^2 h$

 $Cone = \frac{1}{2}\pi r^2 h$

Prism = Bh

Pyramid = $\frac{1}{2}Bh$

B is the area of the base

CIRCUMFERENCE

Circle = $2\pi r$

DISTANCE FORMULA

The distance between two points (x_1, y_1) and (x_2, y_2) is $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

ALGEBRA

Linear Functions

Slope
$$m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

ope
$$m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$
 y -intercept Form
$$y = mx + b$$
Point Slope Form
$$y - y_1 = m(x - x_1)$$
Parallel Lines
Have the same slope
Perpendicular Lines

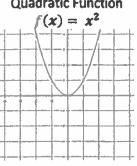
Point Slope Form
$$y - y_1 = m(x - x_1)$$

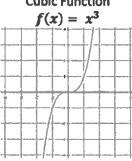
Parallel Lines

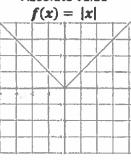
Have the opposite reciprocal slopes

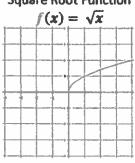
Functions

Quadratic Function









Exponential Function

$$f(x) = b^x, b > 1$$

$$y = a(x-h)^2 + k$$

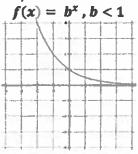
$$y = a(x-h)^3 + k$$

$$y = a|x - h| + k$$

$$y = a\sqrt{x - h} + k$$

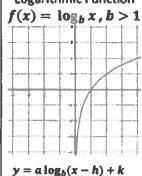
$$y = a \cdot b^{(x-h)} + k$$

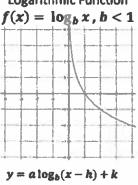
Exponential Function

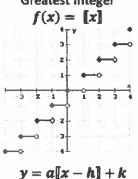


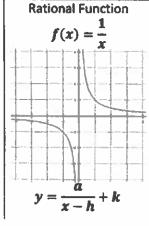
 $y = a \cdot b^{(x-h)} + k$

Logarithmic Function
$$f(r) = \log_{10} r \cdot h > 1$$









Translations

All functions move the same way!

Given the parent function $y = x^2$

Move up 4
$$y = x^2 + 4$$

Move down 3
$$y = x^2 - 3$$

Move left 2
$$y = (x+2)^2$$

Move right 1
$$y = (x - 1)^2$$

Move right 1

$$y = (x-1)^2$$
Move left 2 and down 3
 $y = (x+2)^2 - 3$

To flip (reflect) the function vertically $y = -x^2$ To flip (reflect) the function horizontally $y = (-x)^2$

So $f(x) = -\sqrt{x-3} + 1$ is a square root function reflected vertically, shifted right 3 and up 1

Notation

Notice open parenthesis () versus closed []

Inequality		Interval
$-3 < x \le 5$	\longleftrightarrow	(-3,5]
$-3 \le x \le 5$	\longleftrightarrow	[-3,5]
-3 < x < 5	\longleftrightarrow	(-3,5)
$-3 \le x < 5$	\longleftrightarrow	[-3,5)

Infinity is always open parenthesis

Inequality
$$x < 3$$
 \longleftrightarrow $(-\infty, 3)$ $x \le 3$ or $x > 5$ \longleftrightarrow $(-\infty, 3](5, \infty)$ $x \ne 3$ \longleftrightarrow $(-\infty, 3)(3, \infty)$ all Real numbers \longleftrightarrow $(-\infty, \infty)$

ODD

Even and Odd Functions

EVEN f(-x) = f(x)Symmetric about the y-axis f(x) = f(-x)

Even Function

f(-x) = -f(x)Symmetric about the origin f(x) - f(x)**Odd Function**

Mispredmatt.com

Domain and Range

Domain = all possible x values

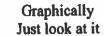
Range = all possible y values

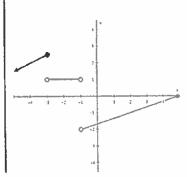
Algebraically
You can't divide by zero
You can't square root a negative

$$y = \sqrt{2x + 5}$$

D: $\left[-\frac{5}{2}, \infty\right)$

$$y = \frac{x^2 - 1}{x^2 + 7x + 12}$$
D: $(-\infty, -4)(-4, -3)(-3, \infty)$





D:
$$(-\infty, -1)(-1,5]$$

Finding zeros

Must be able to factor and use the quadratic formula: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

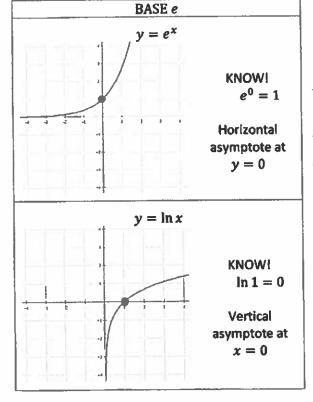
Special products

Sum of cubes: $a^3 + b^3 = (a + b)(a^2 - ab + b^2)$

Difference of cubes: $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$

Exponential and Logarithmic Properties

The exponential function b^x of base b is one-to-one which means it has an inverse which is called the logarithmic function of base b or logarithm of base b which is denoted $\log_b x$ which reads "the logarithm of base b of x" or "log base b of x". So...



$$y = \log_b x \iff x = b^y$$

$\frac{\text{Exponential}}{b^x b^y = b^{x+y}}$	Product Rule	$\frac{\text{Logarithmic}}{\log_b xy = \log_b x + \log_b y}$
$\frac{b^x}{b^y} = b^{x-y}$	Quotient Rule	$\log_b\left(\frac{x}{y}\right) = \log_b x - \log_b y$
$(b^x)^y = b^{xy}$	Power Rule	$\log_b x^y = y \log_b x$
$b^{-x} = \frac{1}{b^x}$		$\log_b\left(\frac{1}{x}\right) = -\log_b x$
$b^0 = 1$		$\log_b 1 = 0$
$b^1 = b$		$\log_b b = 1$
	Change of Base	$\log_b x = \frac{\log_c x}{\log_c b}$
	Natural Log	$\log_e x = \ln e$
	Common Log	$\log_{10} x = \log x$